skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Mingming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Embedding a collective of tumor cells, i.e. a tumor spheroid, in a fibrous environment, such as a collagen network, provides an essentialin vitroplatform to investigate the biophysical mechanisms of tumor invasion. To predict new mechanisms, we develop a three-dimensional computational model of an embedded spheroid using a vertex model, with cells represented as deformable polyhedrons, mechanically coupled to a fiber network via active linker springs. As the linker springs actively contract, the fiber network remodels. As we tune the rheology of the spheroid and the fiber network stiffness, we find that both factors affect the remodeling of the fiber network with fluid-like spheroids densifying and radially realigning the fiber network more on average than solid-like spheroids but only for a range of intermediate fiber network stiffnesses. Our predictions are supported by experimental studies comparing non-tumorigenic MCF10A spheroids and malignant MDA-MB-231 spheroids embedded in collagen networks. The spheroid rheology-dependent effects are the result of cellular motility generating spheroid shape fluctuations. These shape fluctuations lead to emergent feedback between the spheroid and the fiber network to further remodel the fiber network. This emergent feedback occurs only at intermediate fiber network stiffness since at low fiber network stiffness, the mechanical response of the coupled system is dominated by the spheroid and for high fiber network stiffness, the mechanical response is dominated by the fiber network. We are therefore able to quantify the regime of optimal spheroid-fiber network mechanical reciprocity. Our results uncover intricate morphological-mechanical interplay between an embedded spheroid and its surrounding fiber network with both spheroid contractile strengthandspheroid shape fluctuations playing important roles in the pre-invasion stages of tumor invasion. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. ABSTRACT As cells migrate through biological tissues, they must frequently squeeze through micron-sized constrictions in the form of interstitial pores between extracellular matrix fibers and/or other cells. Although it is now well recognized that such confined migration is limited by the nucleus, which is the largest and stiffest organelle, it remains incompletely understood how cells apply sufficient force to move their nucleus through small constrictions. Here, we report a mechanism by which contraction of the cell rear cortex pushes the nucleus forward to mediate nuclear transit through constrictions. Laser ablation of the rear cortex reveals that pushing forces behind the nucleus are the result of increased intracellular pressure in the rear compartment of the cell. The pushing forces behind the nucleus depend on accumulation of actomyosin in the rear cortex and require Rho kinase (ROCK) activity. Collectively, our results suggest a mechanism by which cells generate elevated intracellular pressure in the posterior compartment to facilitate nuclear transit through three-dimensional (3D) constrictions. This mechanism might supplement or even substitute for other mechanisms supporting nuclear transit, ensuring robust cell migrations in confined 3D environments. 
    more » « less
  3. Abstract Cell migration is critical for tissue development and regeneration but requires extracellular environments that are conducive to motion. Cells may actively generate migratory routes in vivo by degrading or remodeling their environments or instead utilize existing extracellular matrix microstructures or microtracks as innate pathways for migration. While hydrogels in general are valuable tools for probing the extracellular regulators of 3-dimensional migration, few recapitulate these natural migration paths. Here, we develop a biopolymer-based bicontinuous hydrogel system that comprises a covalent hydrogel of enzymatically crosslinked gelatin and a physical hydrogel of guest and host moieties bonded to hyaluronic acid. Bicontinuous hydrogels form through controlled solution immiscibility, and their continuous subdomains and high micro-interfacial surface area enable rapid 3D migration, particularly when compared to homogeneous hydrogels. Migratory behavior is mesenchymal in nature and regulated by biochemical and biophysical signals from the hydrogel, which is shown across various cell types and physiologically relevant contexts (e.g., cell spheroids, ex vivo tissues, in vivo tissues). Our findings introduce a design that leverages important local interfaces to guide rapid cell migration. 
    more » « less